FD Basic Connections

Please note!

It is possible to connect an external capacitor (the polarity must be respected) between the VCC/COMMON (+) and GND terminals of the FD Basic. For details please see the next page. The recommended capacitor value is $220-470 \mathrm{uF} / 25 \mathrm{~V}$.

The outputs are Open Drain type; if LEDs are connected they should have a series current limiting resistor.

Out1 is equivalent to the standard FL, Out2 is equivalent to the standard RL. For function mapping please see the CV table.

External capacitor connection

FD Basic CV table

Revision V4

CV	Value (Default)	Range	Description
1	3	0-127	Decoder Adresse Short, 7 bits
7	4	0-255	Software Version
8	78		Manufactured ID/RESET
13	0	0-255	Analog Mode, Alternate Mode Function Status F1-F8 Bit0- F1, bit1- F2 ... bit7- F8, Value bit 1-On 0-Off
14	3	0-255	Analog Mode, Alternate Mode Function. Status FL,FR F9-F14, Bit0FL front light, Bit1- FR rear light, Bit2-F9, ..., bit7- F14
15	0	0-7	LockValue: Enter the value to match Lock ID in CV16 to unlock CV programming. No action and ACK from decoder when LockValue different from LockID. In this situation only CV15 write is allowed.
16	0	0-7	LockID: To prevent accidental programming, ID number unique for decoders with same address ($0 . .7$) 1-loco decoder, 2-sound decoder, 3function decoder, ...
17	192	192-255	Extended Address, Address High
18	3	0-255	Extended Address, Address Low
19	0	0-127	Consist Address If CV \#19 > 0: Speed and direction is governed by this consist address (not the individual address in CV \#1 or \#17+18); functions are controlled by either the consist address or individual address, see CV"s \#21 + 22 .
21	0	0-255	Functions so defined here will be controlled by the consist address. Bit $0=0$: F 1 controlled by individual address $=1 \text { : }$ by consist address Bit $1=0$: F 2 controlled by individual address $=1$: \qquad by consist address $\ldots \ldots . . . \quad \text { F3, F4, F5, F6, F7 }$ Bit $7=0$: F8 controlled by individual address $=1$: by consist address
22	0	0-63	Select whether the headlights are controlled with the consist address or individual address. Bit $0=0$: F 0 (forw.) controlled by individual address $=1 \text { : }$ by consist address Bit 1 = 0: F0 (rev.) controlled by individual address $=1$ by consist address Bit $2=0$: F9 controlled by individual address $=1 \text { : }$ by consist address Bit $3=0$: F10 controlled by individual address $=1 \text { : }$ by consist address Bit $4=0$: F11 controlled by individual address $=1 \text { : }$ by consist address Bit $5=0$: F12 controlled by individual address $=1$: by consist address
29	6	0-63	Configuration Data bit0 -Locomotive Direction: "0" = normal, "1" = reversed bit1-FL location: "0" $=$ bit 4 in Speed and Direction instructions control FL, "1" = bit 4 in function group one instruction controls FL bit2 -Power Source Conversion: "0" = NMRA Digital Only, "1" = Power Source Conversion Enabled bit3-Bi-Directional Communications: "0" = Bi-Directional Communications disabled, "1" = Bi-Directional Enabled bit4 -Speed Table: " 0 " $=$ speed table set by configuration variables \#2,\#5, and \#6, "1" = Speed Table set by configuration variables \#66-

Value $=$ Bit $0 * 1+$ Bit $1 * 2+$ Bit $2 * 4+$ Bit $3 * 8+$ Bit $4 * 16+$ Bit5 $532+$ Bit6*64+Bit $7 * 128$

Address High $=192+($ Extended_Address divide 256 $)$
Address Low $=($ Extended_Address modulo 256 $)$

